پنجشنبه ۲۸ تیر ۱۴۰۳
سه شنبه ۲۹ مرداد ۱۳۹۲ 14607 0 6

سئوال اساسی این است که کدام یک از این هندسه های اقلیدسی یا نااقلیدسی درست است؟ 

هندسه اقلیدسی و نااقلیدسی

علومی که از یونان باستان توسط اندیشمندان اسلامی محافظت و تکمیل شد، از قرون یازدهم میلادی به بعد به اروپا منتقل شد، بیشتر شامل ریاضی و فلسفه طبیعی بود. فلسفه ی طبیعی توسط کوپرنیک، برونو، کپلر و گالیله به چالش کشیده شد و از آن میان فیزیک نیوتنی بیرون آمد. چون کلیسا خود را مدافع فلسفه طبیعی یونان می دانست و کنکاش در آن با خطرات زیادی همراه بود، اندیشمندان کنجکاو بیشتر به ریاضیات می پرداختند، زیرا کلیسا نسبت به آن حساسیت نشان نمی داد. بنابراین ریاضیات نسبت به فیزیک از پیشرفت بیشتری برخوردار بود. یکی از شاخه های مهم ریاضیات هندسه بود که آن هم در هندسه اقلیدسی خلاصه می شد. 
 
هندسه اقلیدسی شاخه ای از ریاضیات
در هندسه اقلیدسی یکسری مفاهیم اولیه نظیر خط و نقطه تعریف شده بود و پنچ اصل را به عنوان بدیهیات پذیرفته بودند و سایر قضایا را با استفاده از این اصول استنتاج می کردند. اما اصل پنجم چندان بدیهی به نظر نمی رسید. بنابر اصل پنجم اقلیدس از یک نقطه خارج از یک خط، یک خط و تنها یک خط می توان موازی با خط مفروض رسم کرد. برخی از ریاضیدانان مدعی بودند که این اصل را می توان به عنوان یک قضیه ثابت کرد. در این راه بسیاری از ریاضیدانان تلاش زیادی کردند و نتیجه نگرفتند. خیام ضمن جستجوی راهی برای اثبات "اصل توازی" مبتکر مفهوم عمیقی در هندسه شد. در تلاش برای اثبات این اصل، خیام گزاره هایی را بیان کرد که کاملا مطابق گزاره هایی بود که چند قرن بعد توسط والیس و ساکری ریاضیدانان اروپایی بیان شد و راه را برای ظهور هندسه های نااقلیدسی در قرن نوزدهم هموار کرد. سرانجام و پس از دو هزار سال اصولی متفاوت با آن بیان کردند و هندسه های نااقلیدسی شکل گرفت. بدین ترتیب علاوه بر فلسفه ی طبیعی ریاضیات نیز از انحصار یونانی خارج و در مسیری جدید قرار گرفت و آزاد اندیشی در ریاضیات آغاز گردید. 
 
اصطلاحات بنیادی ریاضیات
طی قرنهای متمادی ریاضیدانان اشیاء و موضوع های مورد مطلعه ی خود از قبیل نقطه و خط و عدد را همچون کمیت هایی در نظر می گرفتند که در نفس خویش وجود دارند. این موجودات همواره همه ی کوششهای را که برای تعریف و توصیف شایسته ی آنان انجام می شد را با شکست مواجه می ساختند. بتدریج این نکته بر ریاضیدانان قرن نوزدهم آشکار گردید که تعیین مفهوم این موجودات نمی تواند در داخل ریاضیات معنایی داشته باشد. حتی اگر اصولاً دارای معنایی باشند. 

بنابراین، اینکه اعداد، نقطه و خط در واقع چه هستند در علوم ریاضی نه قابل بحث است و نه احتیاجی به این بحث هست. براتراند راسل گفته بود که ریاضیات موضوعی است که در آن نه می دانیم از چه سخن می گوییم و نه می دانیم آنچه که می گوییم درست است. دلیل آن این است که برخی از اصطلاحات اولیه نظیر نقطه، خط و صفحه تعریف نشده اند و ممکن است به جای آنها اصطلاحات دیگری بگذاریم بی آنکه در درستی نتایج تاثیری داشته باشد. مثلاً می توانیم به جای آنکه بگوییم دو نقطه فقط یک خط را مشخص می کند، می توانیم بگوییم دو آلفا یک بتا را مشخص می کند. با وجود تغییری که در اصطلاحات دادیم، باز هم اثبات همه ی قضایای ما معتبر خواهد ماند، زیرا که دلیل های درست به شکل نمودار بسته نیستند، بلکه فقط به اصول موضوع که وضع شده اند و قواعد منطق بستگی دارند. 

بنابراین، ریاضیات تمرینی است کاملاً صوری برای استخراج برخی نتایج از بعضی مقدمات صوری. ریاضیات احکامی می سازند به صورت هرگاه چنین باشد، آنگاه چنان خواهد شد و اساساً در آن صحبتی از معنی فرضها یا راست بودن آنها نیست. این دیدگاه (صوریگرایی) با عقیده کهن تری که ریاضیات را حقیقت محض می پنداشت و کشف هندسه های نااقلیدسی بنای آن را درهم ریخت، جدایی اساسی دارد. این کشف اثر آزادی بخشی بر ریاضیدانان داشت. 
 
اشکالات وارد بر هندسه اقلیدسی
هندسه اقلیدسی بر اساس پنچ اصل موضوع زیر شکل گرفت: 
اصل اول - از هر نقطه می توان خط مستقیمی به هر نقطه ی دیگر کشید. 
اصل دوم - هر پاره خط مستقیم را می توان روی همان خط به طور نامحدود امتداد داد. 
اصل سوم - می توان دایره ای با هر نقطه دلخواه به عنوان مرکز آن و با شعاعی مساوی هر پاره خط رسم کرد. 
اصل چهارم - همه ی زوایای قائمه با هم مساوی اند. 
اصل پنجم - از یک نقطه خارج یک خط، یک خط و و تنها یک خط می توان موازی با خط مفروض رسم کرد. 
 
اصل پنجم اقلیدس که ایجاز سایر اصول را نداشت، به هیچوجه واجد صفت بدیهی نبود. در واقع این اصل بیشتر به یک قضیه شباهت داشت تا به یک اصل! بنابراین طبیعی بود که لزوم واقعی آن به عنوان یک اصل مورد سئوال قرار گیرد. زیرا چنین تصور می شد که شاید بتوان آن را به عنوان یک قضیه نه اصل از سایر اصول استخراج کرد، یا حداقل به جای آن می توان معادل قابل قبول تری قرار داد. 

در طول تاریخ ریاضیدانان بسیاری از جمله، خواجه نصیرالدین طوسی، جان والیس، لژاندر، فورکوش بویوئی و ... تلاش کردند اصل پنجم اقلیدس را با استفاده از سایر اصول نتیجه بگیرند و آن را به عنوان یک قضیه اثبات کنند. اما تمام تلاشها بی نتیجه بود و در اثبات دچار خطا می شدند و به نوعی همین اصل را در اثبات خود به کار می بردند. دلامبر این وضع را افتضاح هندسه نامید. 

یانوش بویوئی یکی از ریاضیدانان جوانی بود که در این را تلاش می کرد. پدر وی نیز ریاضیدانی بود که سالها در این این مسیر تلاش کرده بود و طی نامه ای به پسرش نوشت: تو دیگر نباید برای گام نهادن در راه توازی ها تلاش کنی، من پیچ و خم این راه را از اول تا آخر می شناسم. این شب بی پایان همه روشنایی و شادمانی زندگی مرا به کام نابودی فرو برده است، التماس می کنم دانش موازی ها را رها کنی. 

ولی یانوش جوان از اخطار پدیر نهرسید، زیرا که اندیشه ی کاملاً تازه ای را در سر می پروراند. او فرض کرد نقیض اصل توازی اقلیدس، حکم بی معنی ای نیست. وی در سال 1823 پدرش را محرمانه در جریان کشف خود قرار داد و در سال 1831 اکتشافات خود را به صورت ضمیمه در کتاب تنتامن پدرش منتشر کرد و نسخه ای از آن را برای گاوس فرستاد. بعد معلوم شد که گاوس خود مستقلاً آن را کشف کرده است. بعدها مشخص شد که لباچفسکی در سال 1829 کشفیات خود را در باره هندسه نااقلیدسی در بولتن کازان، دو سال قبل از بوئی منتشر کرده است. و بدین ترتیب کشف هندسه های نااقلیدسی به نام بویوئی و لباچفسکی ثبت گردید. 
 
در قرن نوزدهم دو ریاضیدان بزرگ به نام «لباچفسکى» و «ریمان» دو نظام هندسى را صورت بندى کردند که هندسه را از سیطره اقلیدس خارج مى کرد. صورت بندى «اقلیدس» از هندسه تا قرن نوزدهم پررونق ترین کالاى فکرى بود و پنداشته مى شد که نظام اقلیدس یگانه نظامى است که امکان پذیر است. این نظام بى چون و چرا توصیفى درست از جهان انگاشته مى شد. هندسه اقلیدسى مدلى براى ساختار نظریه هاى علمى بود و نیوتن و دیگر دانشمندان از آن پیروى مى کردند. هندسه اقلیدسى بر پنج اصل موضوعه استوار است و قضایاى هندسه با توجه به این پنج اصل اثبات مى شوند. اصل موضوعه پنجم اقلیدس مى گوید: «به ازاى هر خط و نقطه اى خارج آن خط، یک خط و تنها یک خط به موازات آن خط مفروض مى تواند از آن نقطه عبور کند.» 
 
هندسه لبچفسکی و هندسه ریمانی
هندسه «لباچفسکى» و هندسه «ریمانى» این اصل موضوعه پنجم را مورد تردید قرار دادند. در هندسه «ریمانى» ممکن است خط صافى که موازى خط مفروض باشد از نقطه مورد نظر عبور نکند و در هندسه «لباچفسکى» ممکن است بیش از یک خط از آن نقطه عبور کند. با اندکى تسامح مى توان گفت این دو هندسه منحنى وار هستند. بدین معنا که کوتاه ترین فاصله بین دو نقطه یک منحنى است. 
 
هندسه اقلیدسى فضایى را مفروض مى گیرد که هیچ گونه خمیدگى و انحنا ندارد. اما نظام هندسى لباچفسکى و ریمانى این خمیدگى را مفروض مى گیرند. (مانند سطح یک کره) همچنین در هندسه هاى نااقلیدسى جمع زوایاى مثلث برابر با 180 درجه نیست. (در هندسه اقلیدسى جمع زوایاى مثلث برابر با 180 درجه است.) ظهور این هندسه هاى عجیب و غریب براى ریاضیدانان جالب توجه بود اما اهمیت آنها وقتى روشن شد که نسبیت عام اینشتین توسط بیشتر فیزیکدانان به عنوان جایگزینى براى نظریه نیوتن از مکان، زمان و گرانش پذیرفته شد. چون صورت بندى نسبیت عام اینشتین مبتنى بر هندسه «ریمانى» است. در این نظریه هندسه زمان و مکان به جاى آن که صاف باشد منحنى است. 
 
 
هندسه های نا اقلیدسی
اساساً هندسه نااقلیدسی چیست؟ هر هندسه ای غیر از اقلیدسی را نا اقلیدسی می نامند. از این گونه هندسه ها تا به حال زیاد شناخته شده است. اختلاف بین هندسه های نااقلیدسی و اقلیدسی تنها در اصل توازی است. در هندسه اقلیدسی به ازای هر خط و هر نقطه نا واقع بر آن یک خط می توان موازی با آن رسم کرد. 

نقیض این اصل را به دو صورت می توان در نظر گرفت. تعداد خطوط موازی که از یک نقطه نا واقع بر آن، می توان رسم کرد، بیش از یکی است. و یا اصلاً خطوط موازی وجود ندارند. با توجه به این دو نقیض، هندسه های نا اقلیدسی را می توان به دو گروه تقسیم کرد: 
 
یک - هندسه های هذلولوی
هندسه های هذلولوی توسط بویوئی و لباچفسکی بطور مستقل و همزمان کشف گردید. اصل توازی هندسه هذلولوی - از یک خط و یک نقطه ی نا واقع بر آن بی شمار خط موازی با خط مفروض می توان رسم کرد. 
 
دو - هندسه های بیضوی
در سال 1854 فریدریش برنهارد ریمان نشان داد که اگر نامتناهی بودن خط مستقیم کنار گذاشته شود و صرفاً بی کرانگی آن مورد پذیرش واقع شود، آنگاه با چند جرح و تعدیل جزئی اصول موضوعه دیگر، هندسه سازگار نااقلیدسی دیگری را می توان به دست آورد. پس از این تغییرات اصل توازی هندسه بیضوی بصورت زیر ارائه گردید. 

اصل توازی هندسه بیضوی - از یک نقطه ناواقع بر یک خط نمی توان خطی به موازات خط مفروض رسم کرد. یعنی در هندسه بیضوی، خطوط موازی وجود ندارد. با تجسم سطح یک کره می توان سطحی شبیه سطح بیضوی در نظر گرفت. این سطح کروی را مشابه یک صفحه در نظر می گیرند. در اینجا خطوط با دایره های عظمیه کره نمایش داده می شوند. بنابراین خط ژئودزیک یا مساحتی در هندسه بیضوی بخشی از یک دایره عظیمه است. در هندسه بیضوی مجموع زوایای یک مثلث بیشتر از 180 درجه است. در هندسه بیضوی با حرکت از یک نقطه و پیمودن یک خط مستقیم در آن صفحه، می توان به نقطه ی اول باز گشت. همچنین می توان دید که در هندسه بیضوی نسبت محیط یک دایره به قطر آن همواره کمتر از عدد پی است. 
 
انحنای سطح یا انحنای گائوسی
اگر خط را راست فرض کنیم نه خمیده، چنانچه ناگزیر باشیم یک انحنای عددی k به خطی نسبت دهیم برای خط راست خواهیم داشت k=o انحنای یک دایره به شعاع r برابر است با k=1/r تعریف می کنند. همچنین منحنی هموار، منحنی است که مماس بر هر نقطه اش به بطور پیوسته تغییر کند. به عبارت دیگر منحنی هموار یعنی در تمام نقاطش مشتق پذیر باشد. برای به دست آوردن انحنای یک منحنی در یک نقطه، دایره بوسان آنرا در آن نقطه رسم کرده، انحنای منحنی در آن نقطه برابر با انحنای دایره ی بوسان در آن نقطه است. دایره بوسان در یک نقطه از منحنی، دایره ای است که در آن نقطه با منحنی بیشترین تماس را دارد. توجه شود که برای خط راست شعاع دایره بوسان آن در هر نقطه واقع بر آن بینهایت است. برای تعیین انحنای یک سطح در یک نقطه، دو خط متقاطع مساحتی در دو جهت اصلی در آن نقطه انتخاب کرده و انحنای این دو خط را در آن نقاط تعیین می کنیم. 
 
مفهوم و درک شهودی انحنای فضا
سئوال اساسی این است که کدام یک از این هندسه های اقلیدسی یا نااقلیدسی درست است؟ 
پاسخ صریح و روشن این است که باید انحنای یک سطح را تعیین کنیم تا مشخص شود کدام یک درست است. بهترین دانشی که می تواند در شناخت نوع هندسه یک سطح مورد استفاده و استناد قرار گیرد، فیزیک است. یک صفحه ی کاغذ بردارید و در روی آن دو خط متقاطع رسم کنید. سپس انحنای این خطوط را در آن نقطه تعیین کرده و با توجه به تعریف انحنای سطح حاصلضرب آن را به دست می آوریم. اگر مقدار انحنا برابر صفر شد، صفحه اقلیدسی است، اگر منفی شد می گوییم صفحه هذلولوی است و در صورتی که مثبت شود، ادعا می کنیم که صفحه بیضوی است . 

در کارهای معمولی مهندسی نظیر ایجاد ساختمان یا ساختن یک سد بر روی رودخانه، انحنای سطح مورد نظر برابر صفر است، به همین دلیل در طول تاریخ مهندسین همواره از هندسه اقلیدسی استفاده کرده اند و با هیچگونه مشکلی هم مواجه نشدند. یا برای نقشه برداری از سطح یک کشور اصول هندسه ی اقلیدسی را بکار می برند و فراز و نشیب نقاط مختلف آن را مشخص می کنند. در این محاسبات ما می توانیم از خط کش هایی که در آزمایشگاه یا کارخانه ها ساخته می شود، استفاده کنیم. حال سئوال این است که اگر خط کش مورد استفاده ی ما تحت تاثیر شرایط محیطی قرار بگیرد چه باید کرد؟ اما می دانیم از هر ماده ای که برای ساختن خط کش استفاده کنیم، شرایط فیزیکی محیط بر روی آن اثر می گذارد. البته با توجه با تاثیر محیط بر روی خط کش ما تلاش می کنیم از بهترین ماده ی ممکن استفاده کنیم. بهمین دلیل چوب از لاستیک بهتر است و آهن بهتر از چوب است. 

اما برای مصافتهای دور نظیر فواصل نجومی از چه خط کشی (متری) می توانیم استفاده کنیم؟ طبیعی است که در اینجا هیچ خط کشی وجود ندارد که بتوانیم با استفاده از آن فاصله ی بین زمین و ماه یا ستارگان را اندازه بگیریم. بنابراین باید به سایر امکاناتی توجه کنیم که در عمل قابل استفاده است. اما در اینجا چه امکاناتی داریم؟ بهترین ابزار شناخته شده امواج الکترومغناطیسی است. اگر مسیر نور در فضا خط مستقیم باشد، در اینصورت با جرت می توانیم ادعا کنیم که فضا اقلیدسی است. برای پی بردن به نوع انحنای فضا باید مسیر پرتو نوری را مورد بررسی قرار دهیم . اما تجربه نشان می دهد که مسیر نور هنگام عبور از کنار ماده یعنی زمانی که از یک میدان گرانشی عبور می کند، خط مستقیم نیست، بلکه منحنی است. بنابراین فضای اطراف اجسام اقلیدسی نیست. به عبارت دیگر ساختار هندسی فضا نااقلیدسی است. 
 
در مورد نظریه نسبیت خاص
نظریه نسبیت خاص اینشتین تمایز آشکارى میان ریاضیات محض و ریاضیات کاربردى است. هندسه محض مطالعه سیستم هاى ریاضى مختلف است که به وسیله نظام هاى اصول موضوعه متفاوتى توصیف شده اند. برخى از آنها چندبعدى و یا حتى nبعدى هستند. اما هندسه محض انتزاعى است و هیچ ربطى با جهان مادى ندارد یعنى فقط به روابط مفاهیم ریاضى با همدیگر، بدون ارجاع به تجربه مى پردازد. هندسه کاربردى، کاربرد ریاضیات در واقعیت است. هندسه کاربردى به وسیله تجربه فراگرفته مى شود و مفاهیم انتزاعى برحسب عناصرى تفسیر مى شوند که بازتاب جهان تجربه اند. نظریه نسبیت، تفسیرى منسجم از مفهوم حرکت، زمان و مکان به ما مى دهد. انیشتاین براى تبیین حرکت نور از هندسه نااقلیدسى استفاده کرد. بدین منظور هندسه «ریمانى» را برگزید. 
 
هندسه اقلیدسى براى دستگاهى مشتمل بر خط هاى راست در یک صفحه طرح ریزى شده است اما در عالم واقع یک چنین خط هاى راستى وجود ندارد. اینشتین معتقد بود امور واقع هندسه ریمانى را اقتضا کرده اند. نور بر اثر میدان هاى گرانشى خمیده شده و به صورت منحنى در مى آید یعنى سیر نور مستقیم نیست بلکه به صورت منحنى ها و دایره هاى عظیمى است که سطح کرات آنها را پدید آورده اند. نور به سبب میدان هاى گرانشى که بر اثر اجرام آسمانى پدید مى آید خط سیرى منحنى دارد. براساس نسبیت عام نور در راستاى کوتاه ترین خطوط بین نقاط حرکت مى کند اما گاهى این خطوط منحنى هستند چون حضور ماده موجب انحنا در مکان - زمان مى شود. 

در مورد نظریه نسبیت عام
در نظریه نسبیت عام گرانش یک نیرو نیست بلکه نامى است که ما به اثر انحناى زمان _ مکان بر حرکت اشیا اطلاق مى کنیم. آزمون هاى عملى ثابت کردند که شالوده عالم نااقلیدسى است و شاید نظریه نسبیت عام بهترین راهنمایى باشد که ما با آن مى توانیم اشیا را مشاهده کنیم. اما مدافعین هندسه اقلیدسى معتقد بودند که به وسیله آزمایش نمى توان تصمیم گرفت که ساختار هندسى جهان اقلیدسى است یا نااقلیدسى. چون مى توان نیروهایى به سیستم مبتنى بر هندسه اقلیدسى اضافه کرد به طورى که شبیه اثرات ساختار نااقلیدسى باشد. نیروهایى که اندازه گیرى هاى ما از طول و زمان را چنان تغییر دهند که پدیده هایى سازگار با زمان - مکان خمیده به وجود آید. این نظریه به «قراردادگرایى» مشهور است که نخستین بار از طرف ریاضیدان و فیزیکدان فرانسوى «هنرى پوانکاره» ابراز شد. اما نظریه هایى که بدین طریق به دست مى آوریم ممکن است کاملاً جعلى و موقتى باشند. اما دلایل کافى براى رد آنها وجود دارد؟ 

آی هوش: گنجینه دانستنی ها و معماهای هوش و ریاضی

نظراتی که درج می شود، صرفا نظرات شخصی افراد است و لزوماً منعکس کننده دیدگاه های آی هوش نمی باشد.
آی هوش: مرجع مفاهیم هوش و ریاضی و انواع تست هوش، معمای ریاضی و معمای شطرنج
 
در زمینه‌ی انتشار نظرات مخاطبان، رعایت برخی موارد ضروری است:
 
-- لطفاً نظرات خود را با حروف فارسی تایپ کنید.
-- آی هوش مجاز به ویرایش ادبی نظرات مخاطبان است.
-- آی هوش از انتشار نظراتی که در آنها رعایت ادب نشده باشد معذور است.
-- نظرات پس از تأیید مدیر بخش مربوطه منتشر می‌شود.
 
 
 
 

نظر شما

پرطرفدارترین مطالب امروز

زندگینامه ریاضیدانان: جان فوربز نش
زندگینامه بزرگان ریاضی: سرینیواسا رامانوجان
طنز ریاضی: اثبات 5=2+2
زندگینامه بزرگان ریاضی: مولانا عبدالعلی بیرجندی
اتحادهای ریاضی
تست هوش: مثلث ها را بشمارید.
ساعت ریاضیدانان!
اگر مدرسه را دوست ندارید چه باید بکنید؟
معرفی کتاب: محافل ریاضی؛ تجربهٔ روس‌ها